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Abstract. Nonconvex programs involving bilinear terms and linear equality constraints often

appear more nonlinear than they really are. By using an automatic symbolic reformulation we
can substitute some of the bilinear terms with linear constraints. This has a dramatically
improving effect on the tightness of any convex relaxation of the problem, which makes
deterministic global optimization algorithms like spatial Branch-and-Bound much more effi-

cient when applied to the problem.
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1. Introduction

This paper is concerned with programming problems of the form:

min
x

xTQxþ cTxþ fðxÞ;

Ax ¼ b;

gðxÞ ¼ 0;

hðxÞO0;

x 2 X;

xLO xOxU;

9
>>>>>>>>>>=

>>>>>>>>>>;

ð1Þ

where Q ¼ ðqijÞ is an n � n matrix, x; c; xL;xU 2 Rn, A ¼ ðaijÞ is an m � n
matrix having rank m, b 2 Rm, f : Rn ! R, g : Rn ! Rm1 , h : Rn ! Rm2 and
X is an arbitrary subset of Rn (which might express integrality constraints
on the decision variables, for example). Notice f; g; h are completely arbi-
trary functions. Notice also that we assume mOn, otherwise the feasible
region may be empty. Such a formulation is very general and encompasses
many instances of problems arising from mathematical modelling of real
life processes.
Because the theory developed herein will enable us to substitute some of

the bilinear terms with linear constraints, we can restrict our attention to a
more standard formulation (2) of the bilinear problem. This does not mean
that the methods described only applies to problems in formulation (2),
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but rather that the methods described in this paper are relevant only if the
problem contains at least some bilinear terms and some linear equality
constraints.

min
x

xTQxþ cTx;

Ax ¼ b;

HxOd;

xLO xOxU;

9
>>>>=

>>>>;

ð2Þ

where H is a m0 � n matrix and d 2 Rm0 . In formulation (2) we assume
without loss of generality that A is upper triangular with nonzero entries
along the main diagonal a11; . . . ; amm (we use the term ‘‘upper triangular’’
with a slight abuse of notation since A is not a square matrix; what we
mean is that the leftmost m�m submatrix of A is upper triangular). Since
this can be obtained from any m � n matrix or rank m by a simple appli-
cation of Gaussian elimination and (possibly) column permutation, it does
not restrict the generality of the results. The reason behind this assumption
is that the notation in the proofs becomes greatly simplified.
Solving such problems to global optimality using a deterministic

approach very often involves the use of spatial Branch-and-Bound (sBB)
procedures (Ryoo and Sahinidis, 1995; Vaidyanathan and El-Halwagi,
1996; Epperly and Pistikopoulos, 1997; Adjiman et al., 1998; Smith and
Pantelides, 1999; Kesavan and Barton, 2000). In sBB-type algorithms, at
each iteration upper and lower bound to the objective function are calcu-
lated relative to the current space region. The overall efficiency of such
algorithms mainly depends on the quality of the lower bound, which is
usually found by locally solving a convex relaxation of the problem relative
to the current region: the tighter the relaxation, the better the lower bound.
The methods described in the present work are used as a way to improve
the tightness of the convex relaxation. Notice that our methods can be
introduced as a pre-processing step in an sBB framework, and therefore do
not add significantly to the computational cost of the sBB run.
In this paper we explain how some bilinear terms in certain linearly con-

strained problems can be replaced by appropriate linear constraints. In
order to ease our explanations we shall assume that the bilinear problems
we tackle (in form (2)) are ‘‘dense’’. In other words we require that most
of the possible bilinear terms in the problem variables be present in the
problem formulation: the matrix Q is assumed dense. We wish to empha-
size here that this theory does not require Q to be dense: none of the theo-
retical results herein becomes false when Q is not dense. Rather, it
becomes unlikely that a straightforward application of our methods will
yield useful results. Because in a significant proportion of real-life cases
requiring a dense Q is an unfair assumption, we address this issue in

158 LEO LIBERTI



Section 11, and we suggest how to circumvent the problems arising from
the sparsity of Q.
There have been a lot of papers in the literature devoted to bilinear

problems (2), e.g. (McCormick, 1976; Al-Khayyal and Falk, 1983; Sherali
and Alameddine, 1992). In particular the RLT (Reformulation–Lineariza-
tion Technique) for bilinear problems, proposed in (Sherali and Alamed-
dine, 1992), can potentially produce the same results as the method
explained herein (for reasons that will be discussed in Section 6 below).
As in the RLT, the idea on which this work is based is that of multiply-
ing a linear equality constraint by a problem variable. Practical implemen-
tations of the RLT have to take into account the fact that multiplying all
linear constraints by all variables is overkill. To limit this computational
explosion some heuristic limiting devices have been described. Our theo-
retical development attempts to evaluate the gain obtained by each prod-
uct between a variable and a linear constraint.
Throughout this paper, we shall implicitly make use of the following ele-

mentary facts, which we state here without proof.

1. The sum of all integers from 1 to n is 1
2 nðnþ 1Þ.

2. Given a system Ax ¼ b, if we permute the columns of A, the solution
vector x�p which satisfies the ‘‘permuted’’ system is a permutation of
x�.

3. Given a system Ax ¼ b, there is in general more than one possible
partition of the variables in basic/nonbasic relative to the system.

4. Given a system Ax ¼ b where A is m � n, upper-triangular with non-
zero entries along the main diagonal, and has rank m, we can always
assume w.l.o.g. that the solution vector x is arranged so that the set
fx1; . . . ; xmg is a set of basic variables and fxmþ1; . . . ;xng is a set of
nonbasic variables of the system.

This paper is organized as follows. In Section 2 we present an exact
reformulation of the problem that isolates the bilinear terms in a list of
simple constraints. Section 3 contains the theoretical results about reduc-
tion constraints. Section 4 explains how to find a (super) set of nonbasic
variables of a linear system of equations. In Section 5 we give an expli-
cit formulation of a tight convex relaxation of the bilinear problem,
which we compare, in Section 6, to the convex relaxation obtained by
the RLT. In Section 7 we give some ideas about applying the methods
of this paper to systems of inequalities, and in Section 8 we explain how
some integrality constraints can be inferred by reduction constraint sys-
tems. Section 9 contains three (small-scale) fully worked-out examples
where most of the methods of the paper are applied; the computational
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results relative to these examples are reported in Section 10. In Section
11 we extend our methods to sparse bilinear problems.

2. Problem reformulation

We reformulate the problem so that all bilinear terms in the objective func-
tion are linearized (i.e. replaced by newly defined variables w, with the defi-
nition of these variables added to the list of problem constraints).
For each problem variable xk, let

wk ¼ xkx ¼ ðxkx1;xkx2; . . . ; x2k; . . . ;xkxnÞ; ð3Þ

so that wk
i ¼ xkxi for all iOn. Let W ¼ fwi

j j i; jOng. Notice that wi
j ¼ wj

i

for all i; jOn, which implies that jWj ¼ 1
2 nðnþ 1Þ. The equivalence relation

ði; jÞ � ðj; iÞ on index pairs induces equivalence classes ½i; j� ¼ fði; jÞ; ðj; iÞg
on the set of all index pairs. Let w be the vector derived by ordering the
elements of W in the natural way (i.e. wi

j < wk
l , i < k _ ði ¼ k ^ j < lÞ).

This ordering induces a bijection j between the equivalence classes ½i; j� and
a single index h ¼ jð½i; j�Þ such that 1OhOjWj. We can then reformulate
problem (2) as follows:

min
x;w

pTwþ cTx;

Ax ¼ b;

HxOd;

wi
j ¼ xixj; 8iOjOn;

xLO xOxU;

wLOwOwU;

9
>>>>>>>>>>=

>>>>>>>>>>;

ð4Þ

where p ¼ ðp1; . . . ; pjWjÞ with ph ¼ pjð½i;j�Þ ¼ qij þ qji for all hOjWj.

DEFINITION 2.1. The equality constraints wi
j ¼ xixj, for all i; jOn, are

called w-defining constraints.

The vectors wL;wU 2 RjWj are the w variable bounds (which can be cal-
culated by means of interval analysis on the w-defining constraints).
This reformulation achieves the linearization of the objective function

(all the bilinear terms have been moved to the w-defining constraints).
Notice that formulation (4) is in fact more general than formulation (2):
given any bilinear problem, where the bilinear terms can be either in the
objective function (as in (2)) or in the constraints, a reformulation (4) of
the problem is possible. We shall see in the next sections how some of the
bilinear constraints in problem (4) can be replaced by linear constraints in
both w and x variables.
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3. Reduction constraints

Consider one of the linear equation constraints
Pn

j¼1 aijxj ¼ bi present in
problem (4), for some iOm. If we multiply this constraint by xk (with
kOn) we get

Pn
j¼1 aijxkxj ¼ bixk, and since wk

j ¼ xkxj, we obtain a linear
relationship

Xn

j¼1
aijw

k
j � bixk ¼ 0; ð5Þ

between xk and the wk variables. Equation 5 is a valid problem constraint,
in the sense that adding it to the problem formulation leaves the feasible
region unchanged.

DEFINITION 3.1. The linear equation (5) is called a reduction constraint.
Problem variable xk is called the multiplier variable.

Consider now the whole linear system Ax ¼ b. For each variable xk we can
derive a reduction constraint system by multiplying the system by xk:

Awk � xkb ¼

� b1;

A ..
.

� bm

0

B
B
@

1

C
C
A

wk
1

..

.

wk
n

xk

0

B
B
B
@

1

C
C
C
A
¼ 0: ð6Þ

If we assume A to be upper triangular, then system (6) is also upper-trian-
gular. Notice also that the rows of system (6) are ðai1; . . . ; ain;�biÞ for all
iOm. Since the rows of A are linearly independent, the rows of system (6)
are also linearly independent. Thus system (6) also has rank m.
We now restrict our interest to the following set,

Ck ¼ fðwk;xÞ j Ax ¼ b ^ 8jOn ðwk
j ¼ xkxjÞg; ð7Þ

which forms a superset of the feasible region of problem (4), and we prove
that it is equal to the set

Rk ¼ fðwk;xÞ j Ax ¼ b ^ Awk � xkb ^ 8j 2 fmþ 1; . . . ; ng ðwk
j ¼ xkxjÞg:

ð8Þ
Notice that Ck is defined by m linear constraints and n bilinear constraints,
whereas Rk is defined by 2m linear constraints and only n�m bilinear con-
straints. In other words, a reduction constraint system of rank m can
replace m of the n bilinear constraints. More precisely, as shown in Lemma
3.3. below, it replaces all the bilinear terms xkxj where xj is a basic variable
of the system Ax ¼ b; since we are assuming that A is in upper triangular
form with nonzero entries along the main diagonal, the basic variables are
x1; . . . ;xm.
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DEFINITION 3.2. Given a reduction constraint system Awk � xkb ¼ 0 for
some kOn, we introduce the reduction companion system Azk ¼ 0, where
for all j; kOn we define zkj ¼ wk

j � xkxj (and zk ¼ ðzk1; . . . ; zknÞ).

Note that the definitions of reduction constraint systems and their corre-
sponding reduction companion systems also apply to subsystems of
Ax ¼ b. We shall make use of this fact in the generalization to sparse sys-
tems in Section 11.2.

LEMMA 3.3. For all kOn, we have Ck ¼ Rk.

Proof. The fact that Ck � Rk is easy to prove: the system Ax ¼ b implies
the reduction constraint system, and deleting some of the w-defining con-
straints just makes the set Rk bigger than Ck. We now show that Rk � Ck.
In the reduction constraint system Awk � xkb ¼ 0, replace b by Ax (since
the relation Ax ¼ b holds) to get Awk � xkAx ¼ 0, which implies
Aðwk � xkxÞ ¼ 0, i.e. (after substitution with the z variables) the reduction
companion system Azk ¼ 0. By definition of Rk, we have wk

j ¼ xkxj, and
hence zkj ¼ 0, for all j such that m < jOn. Thus we can delete the last
n�m columns from the system Azk ¼ 0 to obtain an m � m system of full
rank m having right hand side equal to zero. Such a system has a unique
solution zkj ¼ 0 for all jOm, and hence wk

j ¼ xkxj for all jOm. The result
follows. (

By applying the above lemma to problem (4), we see that we can readily
substitute some bilinear w-defining constraints with reduction constraint
systems.
Next, we will consider the system of all reduction constraint systems,

8kOn ðAwk � xkb ¼ 0Þ; ð9Þ
from which we can also derive the companion system in the z variables

8kOn ðAzk ¼ 0Þ; ð10Þ
the superset C of the feasible region of (4), given by

C ¼ fðw; xÞ jAx ¼ b ^ 8k; jOn ðwk
j ¼ xkxjÞg; ð11Þ

and the set defined by Ax ¼ b and system (9)

R ¼ fðw; xÞ jAx ¼ b ^ 8kOn ðAwk � xkbÞg: ð12Þ

PROPOSITION 3.4. Assume that the rank of system (10) is 1
2 nðnþ 1Þ. Then

C ¼ R.

Proof. As in the proof of Lemma 3.3, the fact that C � R is obvious. We
show that R � C. From system (9), by substituting b ¼ Ax and
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zkj ¼ wk
j � xkxj, we get the companion system (10), which has mn equations

in 1
2 nðnþ 1Þ variables (because the relation zkj ¼ zjk holds for all k; jOn).

This system has rank 1
2 nðnþ 1Þ by hypothesis, so it has the unique solution

zkj ¼ 0, i.e., wk
j ¼ xkxj, for all k; jOn. (

By Proposition 3.4, as long as the rank of system (10) is 1
2 nðnþ 1Þ, we can

substitute all the bilinear terms in problem (2) with system (9) without
changing the feasible region. In other words, such a bilinear problem can
be reformulated precisely as a linear problem.
Unfortunately, however, numerical experiments in this sense seem to

point out that the rank of system (10) may only be equal to 1
2 nðnþ 1Þ

when m ¼ n, which implies that the feasible region of the original problem
has at most one point, i.e. when the optimization problem is trivial. In
most cases, however, a significant, if not total, reduction in the number of
w-defining constraints is possible.

CONJECTURE. Let rðm; nÞ be the maximum possible rank of system (10).
Then rðm; nÞ ¼ 1

2mðmþ 1Þ þ ðn�mÞm.

As a corollary to this conjecture, we have that m � n is a necessary (but
not sufficient) condition for rðm; nÞP 1

2 nðnþ 1Þ, showing that only trivial
optimization problems having n as the rank of A may be reformulated as
completely linear.
Although we are not able to establish, at the present state of affairs,

whether Proposition 3.4 is ever actually useful in practice, it nonetheless
unearths a crucial relationship between the number of bilinear w-defining
constraints that can be disposed of via the introduction of reduction con-
straints, and the set of basic variables of the companion system (10).

THEOREM 3.5. Given a bilinear program (4), if t is the rank of the compan-
ion system 8kOnðAzk ¼ 0Þ, exactly t of the 1

2 nðnþ 1Þ bilinear w-defining
constraints are replaced by the reduction constraint systems
8kOn ðAwk � xkb ¼ 0Þ. More precisely, given a set of basic variables z for
the companion system (10), the corresponding w-defining constraints are
replaced by the reduction constraint systems (9).

Proof. By adding the reduction constraint systems (9) to the formulation
of problem (4) we do not restrict its feasible region, as reduction con-
straints are obtained by multiplying an existing problem variable by an
existing problem constraint (and the feasible region is geometrically closed
under such an operation). As in the proofs of Lemma 3.3 and Proposition
3.4, system (10) can be derived from system (9); notice that the two systems
are equivalent, in the sense that one implies the other and vice versa. Let I
be a set of index pairs ði; jÞ, where iOjOn, such that C ¼ fzij j ði; jÞ 2 Ig is a
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set of basic variables for the companion system (10). If the w-defining con-
straints wi

j ¼ xixj, for ði; jÞ 62 I, are present in problem (4), then zij ¼ 0 for
all nonbasic variables zij of the companion system (10). Thus, by elemen-
tary linear algebra, system (10) has a unique solution zij ¼ 0 for all i; jOn.
This implies that formulation (4) need only contain the w-defining con-
straints corresponding to a set of nonbasic variables of system (10),
whereas all the other bilinear constraints are implied in reduction con-
straint systems (9). Furthermore, because jCj ¼ t for any set of basic vari-
ables C (i.e. the number of basic variables of a system is equal to the rank
of the system), we conclude that we can substitute t out of 1

2 nðnþ 1Þ possi-
ble w-defining constraints. (

Thus, in order to reduce the number of bilinear constraints in a program-
ming problem (4), we need to find a set of basic variables of system (10).
For notational convenience, we refer to system (10) either as
8kOnðAzk ¼ 0Þ or in the more compact way Bz ¼ 0 where B is an
mn� 1

2 nðnþ 1Þ matrix and z ¼ ðz11; . . . ; z1n; z
2
2; . . . ; z2n; z

3
3; . . . ; z3n; . . . ; znnÞ. The

problem is now to determine what B looks like, what is its rank and how
to find a set of basic variables for the system Bz ¼ 0. Proposition 3.4 sup-
plies the answer in case B is equivalent to a square matrix. So what hap-
pens when the rank of B is less than 1

2 nðnþ 1Þ? From Lemma 3.3, one
might think that we should be able to eliminate mn bilinear terms; but in
fact, this is an upper bound to the best case. The actual answer depends
on the structure of the matrix A and its companion matrix B. It is always
possible to reduce matrix B to row echelon form via Gaussian elimination
and immediately calculate its rank and a set of basic and nonbasic vari-
ables: we then have to keep the bilinear relations corresponding to the non-
basic z variables, whereas we can discard those that stem from the basic z
variables. However, if the size of A is big, the size of B may be prohibi-
tively huge. Therefore, it would be desirable to be able to find out which
bilinear constraints we can eliminate just by looking at the matrix A.
Before carrying on, we need some notation. For any matrix A let A� be

the matrix A without the first column. Similarly, for any vector v, let v� be
the vector v without the first element.
Consider system (10). As we have seen in the proofs of the theorems

above, this system corresponds to (9). We start with k ¼ 1, i.e. with the
system Az1 ¼ 0. This will allow us to eliminate constraints w1 ¼ x1xj for all
jOm. However, when k ¼ 2, i.e. Az2 ¼ 0, we notice that in the first equa-
tion of the system, namely a11z

2
1 þ � � � þ a1nz

2
n ¼ 0, the leading variable is

z21, which is by definition equal to z12. But in the case k ¼ 1 we had already
derived the relation z12 ¼ 0, which implies z21 ¼ 0. Thus for k ¼ 2 we can
eliminate the first column of the system Az2 ¼ 0, which is equivalent to
solving the system
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A�ðz2Þ� ¼ 0: ð13Þ
This has m equations but only n� 1 variables. Furthermore, because the
rank of A is m, the rank of A� can only be m or m� 1. If the rank of A� is
m, we need only keep n�m� 1 bilinear equations (those corresponding to
the nonbasic variables of system (13)) in the definition of the feasible region
of problem (4) in order to reduce system (13) to a square m � m system of
rank m (which then has a unique solution of z2 ¼ 0, thus implying the rest of
the bilinear constraints). Conversely, if the rank of A� is m� 1, we need to
keep n�m bilinear constraints (those corresponding to the nonbasic vari-
ables of system (13)) in order to make system (13) square and of full rank.
Thus, according to whether matrix A keeps its rank constant whilst discard-
ing its first i columns, we need only keep a number of bilinear constraints
varying between n�m (in the worst case) and n�m� i (in the best case).
The process of discarding the leftmost column of the matrix (and keeping the
appropriate set of bilinear constraints) goes on until its rank is equal to the
number of its columns. From then on the system determines a unique solu-
tion zi ¼ 0 which allows us to replace all the remaining bilinear constraints.
By following the reasoning above, we can replace from a minimum of

1
2mðmþ 1Þ to a maximum of mn bilinear terms with reduction constraints.
The algorithm presented in Section 4.2 is a precise description of the pro-
cess explained above, and will identify the bilinear constraints in the prob-
lem that must be kept and some of those which the reduction constraint
systems can replace. Although this procedure may find a set of bilinear
constraints to keep which has the same size as the set of nonbasic variables
of the companion system, there are cases when this is not true. So whereas
finding the nonbasic variables of the companion system will identify the
minimal set of bilinear constraints to keep, the procedure above might
result in a slightly larger set.
To see why this limitation holds, let X be the set of constraints in the

companion system: for each K � X let nðKÞ be the set of nonbasic variables
of the system of constraints in K, assuming this system transformed so that
it is in upper-triangular form with nonzero entries along the main diagonal.

LEMMA 3.6. Let k 2 N and fKi j iOkg be any covering of X, such that
[k
i¼1ki ¼ X, having size k (where the Ki may or may not be pairwise disjoint).

Then jnðXÞjO
Pk

i¼1 jnðKiÞj.

In other words, the number of nonbasic variables of X is less then or equal
to the sum of the numbers of nonbasic variables in each subsystem of the
covering. The proof of the above lemma is an exercise in linear algebra; it
basically rests on the fact that when one adds equations to a linear system
the number of nonbasic variables of the system decreases.
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Because of Lemma 3.6, finding the nonbasic variables of each of the
Azk ¼ 0 systems in the companion system (10), even whilst imposing the
condition zij ¼ zji for all i; jOn during the process, will gather, in general, a
higher number of variables than if we just looked for the nonbasic vari-
ables of the companion system (10) straight away.
Although the theoretical considerations drawn in this section were

inferred from problem formulation (2), they actually apply to the more
general formulation (1): given any problem (1), in fact, it is easy to isolate
the bilinear terms in w-defining constraints of the kind considered above.
For example, given a constraint sinðx1x2ÞO0 in problem (1) we can add
the w-defining constraint w1

2 ¼ x1x2 and reformulate the constraint as
sinðw1

2Þ. The application of the theory is then straightforward.

4. Finding nonbasic variables of the companion system

In this section we shall explain how to determine the set of nonbasic vari-
ables of the companion system (10), which in turn leads to the set of bilin-
ear terms that is necessary to keep in the problem formulation. We will
present two methods, one of which is optimal (i.e. it finds a set consisting
precisely of all nonbasic variables) but makes use of an mn� 1

2 nðnþ 1Þ
matrix, which can be prohibitively large if m; n are large. The second
method finds a set of variables containing a complete set of nonbasics, but
which may also include some basic variables (and thus is not optimal). The
second method, however, has the advantage of only requiring the m � n
matrix A.
System (9) (which consists of all possible reduction constraints systems)

has a special structure. It can be described as a system Rðw;xÞ ¼ 0 where
R ¼ ðBjR0Þ is an mn� 1

2 nðnþ 3Þ matrix such that:

B¼

a11 a12 a13 . . . a1n 0 . . .

..

. ..
.

am1 am2 am3 . . . amn 0 . . .
a11 0 . . . 0 a12 a13 . . . a1n 0 . . .

..

. ..
. ..

. ..
.

am1 0 . . . 0 am2 am3 . . . amn 0 . . .
a11 0 . . . 0 a12 0 . . . 0 a13 . . . a1n . . .

..

. ..
. ..

. ..
.

am1 0 . . . 0 am2 0 . . . 0 am3 . . . amn . . .

. .
. . .

. . .
.

a11 a12 a13 a1n
..
. ..

. ..
. ..

.

am1 am2 am3 amn

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;
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R0 ¼

�b1 0 . . . 0

..

. ..
.

�bm 0 . . . 0
�b1 0 . . . 0

..

. ..
.

�bm 0 . . . 0
�b1 0 . . . 0

..

. ..
.

�bm 0 . . . 0

. .
. ..

.

�b1
..
.

�bm

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

and ðw;xÞ ¼ ðw1
1; . . . ;w1

n;w
2
2; . . . ;w2

n; . . . ;wn
n; x1; . . . ;xnÞ. Notice that

A ¼ ðaijÞ does not need to be in upper-triangular form for this to hold.
The matrix B corresponds to system (10) and can be obtained from the

matrix R above just by discarding the rightmost n columns involving the
bi’s. Matrix B has a very special shape: in each of its n contiguous sets of
m rows it contains a copy of the matrix A, in what amounts to an almost
block-diagonal form. If we did not consider the relation wi

j ¼ wj
i the result-

ing matrix would be completely block diagonal, with A in each diagonal
block. Instead, almost all columns of B, apart from those corresponding to
the ‘‘pure quadratic’’ wi

i ¼ x2i variables, contain two columns of A. More
precisely, the column of B corresponding to wi

j contains the two columns
of A where aij and aji are located.

LEMMA 4.1. For any i; jOn let lði; jÞ ¼ ðj� 1Þmþ i and mðjÞ ¼ 1
2 jð2n�

jþ 1Þ. The entry of B corresponding to row lði; jÞ and column mðjÞ is aij. Fur-
thermore, all the other entries of column mðjÞ are zeroes.

Proof. It is easy to see that for each jOn, rows ðj� 1Þmþ 1 to jm are a
contiguous block of m rows containing a copy of A ‘‘laid out’’ on various
columns. In particular, the entries of row lði; jÞ are ai1; . . . ; ain (in this
order). Column mðjÞ corresponds to to the variable wj

j: ordering the w vari-
ables in their natural order

w ¼ ðw1
1; . . . ;w1

n;w
2
2; . . . ;w2

n; . . . ;wn�1
n�1;w

n�1
n ;wnÞ;

we see that w j
j occurs at the nþ ðn� 1Þ þ � � � þ ðn� ðj� 1ÞÞth position.

This means
Pj

l¼1ðn� lþ 1Þ ¼ 1
2 jð2n� jþ 1Þ ¼ mðjÞ. Hence, because the mðjÞ
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column corresponds to a ‘‘pure quadratic’’ variable wj
j, it only contains one

column of A: the column where ajj is located. The result follows. (

4.1. EXPLICIT CONSTRUCTION OF THE COMPANION SYSTEM

The following algorithm will construct the matrix B ¼ ðbijÞ from the matrix
A (which does not need to be in upper-triangular form in the following
algorithm).

initialize B ¼ 0;

for i ¼ 1 to nf
for j ¼ 1 to mf
l ¼ 1;

k ¼ i;

s ¼ ði� 1Þmþ j;

bsk  ajl;

l lþ 1;

for t ¼ 1 to i� 1f
k kþ n� t;

bsk  ajl;

l lþ 1;

g
for t ¼ l to nf

k kþ 1;

bsk  ajt;

g
g

g
Constructing matrix B from A is useful because by Theorem 3.5, finding
the nonbasic variables of matrix B will immediately identify the minimal
set of w-defining constraints to keep in the formulation of the problem.

4.2. IMPLICIT SEARCH OF NONBASICS OF THE COMPANION SYSTEM

The algorithm presented below identifies a set of variables in the compan-
ion system (10) which contains a complete set of nonbasic variables of
(10). This algorithm follows the theoretical discussion in Section 3 (p. 7)
and has the limitation explained in Lemma 3.6.
For any matrix A let gðAÞ be the application of Gaussian elimination to

A (i.e. gðAÞ is A reduced to row echelon form, with a possible column
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permutation to ensure the main diagonal entries are nonzero), let rkðAÞ be
the rank of A and colsðAÞ the set of column vectors of A. For a system
Ax ¼ 0 let nonbasicðA; xÞ be the set of nonbasic variables of the system.
Notice that this algorithm does not apply to the particular case where A is
such that m ¼ n.

keep relations from nonbasicðA; z1Þ;
r ¼ 0;

l ¼ rkðAÞ;
for k ¼ 2 to n f

h ¼ rkðA�Þ;
if h ¼ jcolsðAÞj � 1f
stop;

g
if h ¼ l f
A gðA�Þ;
r rþ 1;

keep relations from nonbasicðA; zkÞ; ðiÞ
g else if h ¼ l� 1f
A A��;

keep relations from nonbasicðA; zkÞ; ðiiÞ
l l� 1;

g
g

The instruction ‘‘keep relations from nonbasicðA; zkÞ’’ means that the bilin-
ear constraints wk

j ¼ xkxj deriving from setting the nonbasic variables zkj to
zero should be kept in the formulation of the problem. Notice that the
counter r is not used directly in the algorithm above; however, it makes it
possible to keep track of the number of bilinear constraints that have to
remain in the formulation. In step (i) n� k� r bilinear constraints have to
be kept; in step (ii) n� k� rþ 1 have to be kept.
At each iteration, this algorithm takes away the leftmost column of A

(i.e. the column corresponding to variables zkj where k > j, which had
appeared in earlier steps as zjk). If the matrix preserves its rank, Gaussian
elimination (with a possible column permutation) is performed on it so
that the matrix becomes upper-triangular again, and the nonbasic variables
of the system can be identified (and the w-defining constraints deriving
from setting the nonbasic variables to zero kept in the problem formula-
tion). If the rank of the matrix decreases, it means that the first row is
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linearly dependent on all the other rows, so by removing the first row we
obtain a linearly independent system of rank m� 1 which is already in
upper-triangular form (because the matrix was in upper-triangular form
before removing the first column and the first row). Hence we can immedi-
ately identify the nonbasic variables of the system and keep the deriving
w-defining constraints in the problem formulation. The algorithm termi-
nates when the system is square, as we need to keep no more w-defining
constraints after that.
Let Or be the complexity of the algorithm for calculating the rank of a

matrix, and let Og be the complexity of the algorithm for performing
Gaussian elimination. The complexity of the above algorithm is then
OðnOrOgÞ. Typically, Or and Og are polynomial in the sizes of the matri-
ces they operate on, so the whole algorithm is a polynomial time algo-
rithm.

5. Convex relaxation

Having replaced as many as possible of the bilinear constraints in problem
(4) with linear reduction constraints, we obtain a problem in the following
form:

min
x;w

pTwþ cTx;

Ax ¼ b;

HxOd;

9 I; J 	 N 8ði; jÞ 2 I � J wi
j ¼ xixj;

8kOn Awk � xkb ¼ 0;

xLOxOxU;

wLOwOwU;

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

ð14Þ

where the set I � J is empty if the rank of system (10) is 1
2 nðnþ 1Þ and is

determined by the nonbasic variables of the companion system otherwise.
Supposing I � J is nonempty, problem (14) is nonconvex. Because in
many global optimization techniques (like e.g. Branch-and-Bound) we need
a convex relaxation of the problem, we can provide that by replacing the
bilinear equality constraints with their respective convex underestimators/
concave overestimators.
A linear relaxation for bilinear terms wi

j ¼ xixj was introduced in
(McCormick, 1976) and later proved to be the convex envelope for such
bilinear terms (Al-Khayyal and Falk, 1983). It consists of the following
planar inequalities:
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wi
jPxLi xj þ xLj xi � xLi x

L
j ;

wi
jPxUi xj þ xUj xi � xUi x

U
j ;

wi
jOxUi xj þ xLj xi � xUi x

L
j ;

wi
jOxLi xj þ xUj xi � xLi x

U
j :

Furthermore, it is clear from Euclidean plane geometry that a linear con-
vex relaxation for the term wi

i ¼ x2i can be obtained by employing the
secant and the tangents at the interval endpoints:

wi
iO ðxLi þ xUi Þxi � xLi x

U
i ;

wi
iP 2xLi xi � ðxLi Þ

2;

wi
iP 2xUi xi � ðxUi Þ

2;

wi
iP 0:

ð15Þ

The above elementary relaxation is known as the ‘‘secant’’ relaxation for
quadratic terms. This relaxation can be further tightened by considering
inequalities ðxi � aÞ2 P 0 for a 2 ðxL;xUÞ, i.e.

wi
i P 2axi � a2:

All these inequalities tighten the relaxation, and in fact if one considers the
set of all such inequalities, as a spans the interval ½xL;xU�, they define the
same set as the inequality wi

i P x2i .
By applying the method of reduction constraints together with McCor-

mick’s and secant relaxations for the possibly remaining bilinear terms, we
end up with a convex relaxation of the original bilinear problem (2). For
notational convenience when we carry out the discussion of the RLT, we
shall refer to the conjunction of these methods (reduction constraints,
McCormick and secant relaxations) as the RCMS method.

6. Comparison with RLT

In order to form a linear convex relaxation of problem (2), the RLT (Sher-
ali and Alameddine, 1992) applied to bilinear problems considers the fol-
lowing sets:

– the bound factor set BF ¼ fxi � xLi j iOng [ fxUi � xijiO ng;
– the constraint factor set CF ¼ f

Pn
j¼1 aijxj � bi j iOmg.

Note that for each b 2 BF the constraint b P 0 is a valid problem con-
straint, and so is c ¼ 0 for all c 2 CF.
The RLT procedure for forming the convex relaxation consists in creat-

ing new linear valid constraints (reformulation step) by multiplying
together bound factors and constraint factors as follows:
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1. for all b1;b2 2 BF, b1b2 P 0 is a valid constraint (generation via
bound factors);

2. for all b 2 BF and for all c 2 CF, bc ¼ 0 is a valid constraint (mixed
generation);

3. for all c1; c2 2 CF, c1c2 ¼ 0 is a valid constraint (generation via con-
straint factors).

Having created all these new constraints, we define new variables wi
j ¼ xixj

for all i, j between 1 and n, and we substitute them whenever a bilinear
product appears in problem (2) or in the newly generated constraints (line-
arization step). Assuming there are t bilinear terms in the problem with the
newly added constraints, we end up with a linear relaxation whose variable
vector ðx;wÞ is in Rnþt. Let SF be the region defined by the newly gener-
ated constraints. The linear convex relaxation of (2) is as follows:

min
x

cTxþ pTw;

Ax ¼ b;

HxO d;

ðx;wÞ 2 SF;

xL OxOxU;

wL OwOwU;

9
>>>>>>>>>>=

>>>>>>>>>>;

ð16Þ

where wL;wU 2 Rt are the variable bounds on the w variables (obtained by
simple interval arithmetic on the bounds of the x variables via the defining
relations wi

j ¼ xixj).
We claim that the convex relaxations obtained with RCMS and with

RLT as described above are identical, in the sense that their feasible
regions are exactly the same; however, the RLT procedure generates too
many constraints, i.e. it generates all possible factor products without dis-
cerning where it could be beneficial and where in fact it is not useful. As
Epperly put it, ‘‘The difficulty with (the RLT) is that the LP size grows
exponentially with the number of constraints. If supplemented by a method
to determine which constraints are necessary, this technique would be
much more useful’’ (Epperly, 1995, p. 23).
In order to show that the two methods generate relaxations having iden-

tical feasible regions, we show that each constraint generated by the RLT
is either also generated by the RCMS or it is a linear combination of con-
straints generated by the RCMS, and vice versa.
Consider the RLT generation via bound factors. For given problem vari-

ables xi, xj, with i 6¼ j, we can derive the following constraints:

ðxi � xLi Þðxj � xLj ÞP 0;

ðxi � xLi ÞðxUj � xjÞP 0;
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ðxUi � xiÞðxj � xLj ÞP 0;

ðxUi � xiÞðxUj � xjÞP 0;

which are equivalent to

xixj P xLi xj þ xLj xi � xLi x
L
j ;

xixj O xLi xj þ xUj xi � xLi x
U
j ;

xixj O xUi xj þ xLj xi � xUi x
L
j ;

xixj P xUi xj þ xUj xi � xUi x
U
j ;

which in fact are exactly the McCormick relaxation inequalities for the
term xixj. Notice that in the RCMS method we generate such inequalities
for all bilinear terms left in the problem after the reduction constraints
reformulation procedure, whereas in the RLT this limitation (i.e. generate
such constraints only when the term xixj is present in the problem) is not
explicitly stated. Thus the RLT generates more bound factor products than
is really necessary.
Whenever i ¼ j we can derive the following constraints:

ðxi � xLi ÞðxUi � xiÞP 0;

ðxi � xLi Þ
2P 0;

ðxUi � xiÞ2P 0;

which are equivalent to:

x2i O ðxLi þ xUi Þxi � xLi x
U
j ;

x2i P 2xLi xi � ðxLi Þ
2;

x2i P 2xUi xi � ðxUi Þ
2;

which, together with the (obvious) constraint x2i P 0, form exactly the
secant relaxation for quadratic terms, which is considered in the RCMS.
Again, the RLT potentially generates more of these constraints than is gen-
erally necessary.
Consider now the RLT mixed generation (multiplying one bound factor

by one constraint factor). For any variable index l and constraint index i
we can derive the following constraints:

ðxl � xLl Þ
Xn

j¼1
aijxj � bi

 !

¼ 0;

ðxUl � xlÞ
Xn

j¼1
aijxj � bi

 !

¼ 0;
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which, on substituting wl
j ¼ xlxj, are equivalent to

Xn

j¼1
aijw

l
j � bixl

 !

� xLl

Xn

j¼1
aijxj � bi

 !

¼ 0;

Xn

j¼1
aijw

l
j � bixl

 !

� xUl
Xn

j¼1
aijxj � bi

 !

¼ 0:

Now, the constraint
Pn

j¼1 aijw
l
j � bixl ¼ 0 is a reduction constraint in the

RCMS method, and the RCMS theory requires that all such constraints be
generated. Obviously, the constraint

Pn
j¼1 aijxj � bi ¼ 0 is already part of

the set of linear constraints, so subtracting a multiple of it from a reduc-
tion constraint does not add new information to the problem. In short,
whenever this kind of constraints are generated by the RLT, they are a lin-
ear combination of constraints which the RCMS creates.
Lastly, consider the RLT constraint factor generation: for constraint

indices i, k we can derive the following constraint:

Xn

j¼1
aijxj � bi

 !
Xn

l¼1
aklxl � bk

 !

¼ 0;

which is equivalent to

Xn

j¼1
aijxj

Xn

l¼1
aklxl � bk

 ! !

� bi
Xn

l¼1
aklxl � bk

 !

¼ 0:

Because the reduction constraints of the form xjð
Pn

l¼1 aklxl � bkÞ ¼ 0 are
created by the RCMS, the constraint above does not add new information
to the relaxation.
The reasoning above has shown that the relaxation obtained via the

RLT is no better than that obtained via the RCMS. By using the same
algebraic relations above, we can also show the converse: each reduction
constraint, McCormick relaxation and secant relaxation can be obtained
by combining bound and constraint factors. However, because of the
mathematical theory behind the creation of reduction constraints, the
RCMS only creates those constraints which serve the purpose of reducing
the number of nonlinear terms in the problem. The RLT on the other
hand, if not used with some common-sense rule of thumb, creates all possi-
ble combinations of the bound and constraint factors, which is useless in
most instances.

7. Reduction constraints from systems of inequalities

In this section we shall explore some of the possibilities of using an inequal-
ity system HxOd present in formulation (2) in order to create some more
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reduction constraints. Most of the material in this section is not analyzed in
great detail: it should be seen as a collection of ideas for further research.

7.1. REDUCTION INEQUALITY CONSTRAINTS

The first possibility is to create reduction inequality constraints. Since for
each kOn, the translated variable xk � xLk (where xLk is the lower bound of
xk) is always nonnegative, by multiplying HxOd and xk � xLk we get a
valid system of relations ðxk � xLkÞHxOðxk � xLkÞd, that is xkHx� xkd�
ðxLkHx� xLkdÞO0. In terms of the w variables, this means

Hwk � xkd� xLkðHx� dÞO0: ð17Þ

The same can be done with the multiplicative factor xUk � xk, as it is always
nonnegative. These are generally valid cuts for the convex relaxation of the
problem obtained by substituting each of the w-defining constraints with
their convex relaxations. Thus, they can be kept in the formulation of the
convex relaxation of the problem. The RLT also generates systems like
(17) from linear inequalities in the problem. It is an open problem whether
some theoretical criterion for the generation of all useful (as opposed to
just ‘‘all’’) inequality reduction constraints exists: at the present state of the
matter this type of generation of reduction inequality constraints is still in
the realm of heuristics, although some work with special reference to 0–1
mixed-integer programs has been carried out (Sherali et al., 2000).

7.2. DERIVING EQUATIONS FROM INEQUALITIES

There are other ways to treat the inequality constraint system HxOd. A nat-
ural observation is that any inequality can be transformed into an equation
via the introduction of slack variables. Let s ¼ ðs1; . . . ; sm0 Þ, where si P 0 for
all iOm0. Recall from formulation (2) that m0 is the number of rows and the
rank of matrix H ¼ ðhijÞ, and the number of components of the right hand
side vector d. We can then write HxOd as a system of equations

Hxþ s ¼ d; ð18Þ
together with the bounds 8iOm0 ðsi P 0Þ on the s variables. First of all
notice that since the ith equation in system (18) depends on a variable si
and none of the other equations in the system depend on it (and obviously
none of the equations in the system Ax ¼ b depend on it either), the com-
bined system Ax ¼ b ^Hxþ s ¼ d is a linearly independent system with
mþm0 equations in nþm0 variables. Unfortunately just simply deriving
reduction constraints directly from system (18) via multiplication of system
(18) by each of the problem variables x would not work: we would end up
with m0n new w-defining constraints involving the s and x variables (all
bilinear products xksi with kOn; iOm0) and a system of m0n new reduction
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constraints (each of the n problem variables x multiplies system (18) which
has m0 equations). This new reduction constraint system has rank rOm0n,
as we have seen in other sections of this paper. Thus we would not be able
to eliminate more bilinear terms than the ones we need to create in order
to carry out the procedure.

7.3. ELIMINATING SLACK VARIABLES

If we managed to reduce the number of slack variables required to make
HxOd into a system of equations, we might still be able to carry out the
normal reduction constraints creation procedure and find we can substitute
a greater number of bilinear terms than we need to create. To this purpose,
observe that given a point x� satisfying Hx�Od, the slack variables s can
be seen as a distance between x� and the hyperplanes P1; . . . ;Pm0 defined
by Hx ¼ d. Let T be the linear hypersurface defined by Ax ¼ b. We can
define the distance si ¼ qTðx;PiÞ between T and Pi at a point x 2 T as the
length of the shortest segment perpendicular to T at the point x and delim-
ited by the hyperplane Pi.
Because feasible points of problem (2) cannot be at just any distance

from Hx ¼ d, but are constrained to belong to the hypersurface T defined
by Ax ¼ b, it is possible, in theory, to find relations between the s variables
that could help reduce their number.

7.4. EQUIDISTANT HYPERPLANES

Suppose there is a subsystem
H 0xO d 0 ð19Þ

of HxOd, having m00Om0 inequalities, such that the hyperplanes defined by
H0x ¼ d 0 ð20Þ

lie at the same distance s0 from the hypersurface T defined by Ax ¼ b. In
that case s0 would be the only required slack variable to make the subsys-
tem (19) a system of equations, for the solution to problem (2) would nec-
essarily be equidistant from each of the hyperplanes in system (20). Thus,
from system

H0xþ s0 ¼ d 0; ð21Þ
where H0 ¼ ðh0ijÞ, d 0 ¼ ðd 01; . . . ; d 0m00 Þ and s0P 0, we can potentially derive
more reduction constraints than we need to create new bilinear w-defining
constraints between the x variables and s0 (whether we actually can or not
depends, as in the sections above, largely on the structure of H0). There is
a caveat, however. Although system (21) is linearly independent (because
the original system HxO d was supposed by hypothesis to be defined by
linearly independent hyperplanes, and adding a column to a linearly inde-
pendent system preserves the linear independence), the combined system of
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equations Ax ¼ b ^H0xþ s0 ¼ d 0 might not be linearly independent. If we
eliminate s0 from system (21) via elementary row operations we might end
up with some nonzero rows in the x variables which are linearly dependent
on Ax ¼ b.
Carrying on with the argument, we need to find a maximal set P of

hyperplanes in system (20) having the following property:

8P;Q 2 P 8x 2 T ðqTðx;PÞ ¼ qTðx;QÞÞ:

Notice that there may be more than one such maximal sets, and in fact we
are interested in finding them all as long as they contain at least two
planes, as from each of these sets we can obtain a subsystem like (21)
(obviously each of these subsystem would have a separate slack variable).
Figure 1 shows the geometrical interpretation in three dimensions of what
we are trying to achieve: P,Q are planes which are equidistant from line T
(the z coordinate axis). D and D0 are shortest segments perpendicular to T
and delimited by P and Q respectively. Notice P and Q are such that

Q P

D’D

T

x
1 0.5 -0.5 -1

y 1

4

3

2

1

Figure 1. Hyperplanes P;Q are equidistant from T (D;D0 have the same length).
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lðDÞ ¼ lðD0Þ (where lð�Þ indicates the length of the segment) for whatever
x 2 T we choose as a common segment delimiter.
Constructing an algorithm based on this idea is outside of the scope of

this paper. However, as the material explained in this section rests on noth-
ing more than linear n-dimensional Euclidean geometry, such an algorithm
should not be exceedingly hard to devise.

8. Application to mixed-integer programming

We have shown in this paper how to substitute bilinear terms with linear
constraints: this implies that the convex relaxation of the problem is much
tighter, since there are less nonconvex terms to relax. This, in turn, sug-
gests an application of this theory to mixed-integer programming. It is a
well-known fact that in the field of global optimization of mixed-integer
nonlinear programs (MINLPs), a continuous reformulation of the MINLP
can be obtained by relaxing 0–1 integer variables z to continuous variables
0O�zO 1 and by including the nonconvex constraint

�z� �z 2 ¼ 0 ð22Þ
in the formulation. Smith noted (see Smith, 1996, pp. 209–210; Smith and
Pantelides, 1997) that the ‘‘secant’’ convex relaxation (15) of the quadratic
term in constraint (22) is such that the integrality requirements of z would
be completely lost when solving the convex relaxation of the problem.
Thus, whereas this kind of continuous reformulation for MINLPs works
well when performing NLP local optimization, it might not perform so effi-
ciently in global optimization with Branch-and-Bound techniques which
require a convex relaxation of the problem.
By reformulating constraint (22) to

�z� �w ¼ 0;

�w ¼ �z 2

we get a w-defining constraint for the quadratic term �z 2. Supposing the
hypotheses of Proposition 3.4 were satisfied, and we managed to substitute
all bilinear terms with reduction constraints, then the convex relaxation of
the MINLP would embed the vital information about the integrality of z,
and the MINLP could thus be solved to global optimality via straightfor-
ward LP or NLP techniques. But even in the case where we cannot substi-
tute all bilinear terms with reduction constraints, we might at least be able
to substitute the quadratic term �z 2 with a reduction constraint. If that hap-
pens, the convex relaxation would have a higher chance to be solved to inte-
grality of �z 2 than it would otherwise, since the relaxation is much tighter.
This concept can be generalized to any kind of integer variable. Suppos-

ing z can take the integer values a1; . . . ; an, we can reformulate z to a
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continuous variable �z such that miniOn aiO�zOmaxiOn ai, and include the
following nonconvex constraint:

ð�z� a1Þ � � � ð�z� anÞ ¼ 0 ð23Þ

in the formulation of the problem. By reformulating this constraint to
�wn�1 ¼ �z� an;

�wn�2 ¼ �wn�1ð�z� an�1Þ;

..

.

�w1ð�z� a1Þ ¼ 0:

We end up with n� 1 bilinear products �wi�z for all iOn� 1. Again depend-
ing on the structure of the problem we might be able to eliminate such
bilinear terms, thus making sure that the integrality requirements of z have
more chances of being carried over to the convex relaxation of the MIN-
LP.

9. Examples

In this section we shall present three worked-out examples which illustrate
the applicability and usefulness of the methods explained in the paper.

EXAMPLE 1. Consider the problem

min
x
�x21 þ x22 � x1x2 þ 3x1 � x2;

x1 þ x2 ¼ 1:

)

The reformulation is

min
x;w

�w1
1 þ w2

2 � w1
2 þ 3x1 � x2;

x1 þ x2 ¼ 1;

w1
1 ¼ x21;

w1
2 ¼ x1x2;

w2
2 ¼ x22:

9
>>>>>>>>=

>>>>>>>>;

By multiplying the linear constraint x1 þ x2 ¼ 1 by x1 and then by x2 we
get the reduction constraint systems (having only one equation each)
w1
1 þ w1

2 � x1 ¼ 0 and w1
2 þ w2

2 � x2 ¼ 0. From these, by substituting
x1 ¼ x21 þ x1x2 and x2 ¼ x1x2 þ x22, we get ðw1

1 � x21Þ þ ðw1
2 � x1x2Þ ¼ 0 and

ðw1
2 � x1x2Þ þ ðw2

2 � x22Þ ¼ 0. The corresponding ‘‘companion’’ system in
the z variables (cf. Equation. 10, where z11 ¼ w1

1 � x21, z
1
2 ¼ w1

2 � x1x2 and
z22 ¼ w2

2 � x22) is
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z11 þ z12 ¼ 0;

z12 þ z22 ¼ 0:

)

ð24Þ

First of all notice that system (24) corresponds to Bz ¼ 0 where

B ¼ 1 1 0
0 1 1

� �

and z ¼ ðz11; z12; z22Þ, which clearly has rank 2, and nonbasic variable z22. We
should therefore keep the relation w2

2 ¼ x22 and discard the rest. For the
sake of a complete explanation, however, let us follow the algorithm of Sec-
tion 4.2 as well. We first tackle the system z11 þ z12 ¼ 0. This has rank 1 and
is already in upper-triangular form. We impose the nonbasic variable
z12 ¼ 0 and keep the resulting relation w1

2 ¼ x1x2 in the formulation of the
problem. Now we consider the second system, namely z12 þ z22 ¼ 0. We
remove the first column: the system is now reduced to z22 ¼ 0, which is a
square system having rank 1; thus the algorithm terminates. Hence all we
need to keep, in the formulation of the problem, is the relation w1

2 ¼ x1x2.
Notice that this is a different answer to that obtained by looking at system
(24). This is not a mistake, however. It is easy to see, from system (24), that
we may impose either z12 ¼ 0 or z22 ¼ 0 (or, for that matter, also z11 ¼ 0) to
determine a square system of rank 2 with the unique zero solution for the
remaining z variables. Notice also that in this case the algorithm in Section
4.2 gives a set of bilinear constraints to keep that has minimal size.
The problem can now be expressed in form (14) as

min
x;w

�w1
1 þ w2

2 � w1
2 þ 3x1 � x2;

x1 þ x2 ¼ 1;

w1
1 þ w1

2 � x1 ¼ 0;

w1
2 þ w2

2 � x2 ¼ 0;

w1
2 ¼ x1x2:

9
>>>>>>>>=

>>>>>>>>;

This is a big step forward, because a problem with three bilinear terms has
been reduced to a problem with only one bilinear term. We can now
replace the bilinear w-defining constraint w1

2 ¼ x1x2 with its McCormick
convex relaxation to obtain a convex relaxation of the whole problem.

EXAMPLE 2. Consider the problem

min
x

x21 þ x22 þ x23 � x1x2 � x2x3 � x3;

x1 þ x2 þ 2x3 ¼ 1;

x1 þ 2x2 þ x3 ¼ 1:

9
>>=

>>;
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After the reformulation, this becomes

min
x;w

w1
1 þ w2

2 þ w3
3 � w1

2 � w2
3 � x3;

x1 þ x2 þ 2x3 ¼ 1;

x1 þ 2x2 þ x3 ¼ 1;

w1
1 ¼ x2;

w1
2 ¼ x1x2;

w2
2 ¼ x2;

w2
3 ¼ x2x3;

w3
3 ¼ x23:

9
>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>;

Notice that the bilinear constraint w1
3 ¼ x1x3 is missing from the formula-

tion, but we shall need it when considering the reduction constraint sys-
tems. The linear constraints of this problem correspond to the system
Ax ¼ b, where

A ¼ 1 1 2
1 2 1

� �

; ð25Þ

x ¼ ðx1;x2; x3Þ, and b ¼ ð1; 1Þ. Multiplying this by x1; x2;x3 we get the
reduction constraint systems

w1
1 þ w1

2 þ 2w1
3 � x1 ¼ 0;

w1
1 þ 2w1

2 þ w1
3 � x1 ¼ 0;

w1
2 þ w2

2 þ 2w2
3 � x2 ¼ 0;

w1
2 þ 2w2

2 þ w2
3 � x2 ¼ 0;

w1
3 þ w2

3 þ 2w3
3 � x3 ¼ 0;

w1
3 þ 2w2

3 þ w3
3 � x3 ¼ 0:

If we let

z11 ¼ w1
1 � x21;

z12 ¼ w1
2 � x1x2;

z13 ¼ w1
3 � x1x3;

z22 ¼ w2
2 � x22;

z23 ¼ w2
3 � x2x3;

z33 ¼ w3
3 � x23;
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the reduction constraint systems above correspond to the companion sys-
tem Bz ¼ 0, where

B ¼

1 1 2 0 0 0
1 2 1 0 0 0
0 1 0 1 2 0
0 1 0 2 1 0
0 0 1 0 1 2
0 0 1 0 2 1

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

and z ¼ ðz11; z12; z13; z22; z23; z33Þ. This matrix has row echelon form (obtained
without row or column permutations)

1 1 2 0 0 0
0 1 �1 0 0 0
0 0 1 1 2 0
0 0 0 1 �1 0
0 0 0 0 2 �2
0 0 0 0 0 0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

and thus rank 5. This means that the reduction constraint systems can
replace 5 out of 6 w-defining constraints. In particular, we should keep the
one that corresponds to the nonbasic variable z33, i.e. w

3
3 ¼ x23.

Let us now turn to the algorithm of Section 4.2 applied to the matrix A
in Equation 25. Writing A in row echelon form, we have

A ¼ 1 1 2
0 1 �1

� �

; ð26Þ

so rkðAÞ ¼ 2 and nonbasicðA; z1Þ ¼ fz13g. A� (i.e. A without the first col-
umn) clearly has rank 2 and all variables are basic, so we can stop. So it is
sufficient to keep the relation w1

3 ¼ x1x3 in the formulation of the problem
to recover all the other w-defining constraints through the reduction con-
straints. Again, the choice of the w-defining constraint to keep is not
unique; and again the algorithm in Section 4.2 gives a set of bilinear con-
straints to keep that has minimal size.

EXAMPLE 3. This is a more complex problem, expressed in formulation
(1), which will illustrate most of the techniques described in this paper.
Notice that in this example we tackle a MINLP, as x5 is a binary
variable:
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min
x

x21þx1x2�x1x3�2x1x4þx22þ3x2x4�x2x5þx3x4þ3x24þ2x4x5

�x1�x4�x6þ e�x2x3 ;

x1þx2�x3þx4þx5¼ 1;

x2�x4�x5¼�1;
x1þ2x2�2x3P0;

2x1þ7x2�x3O0;

ex3x4� logðx6Þ�x2x6O1;

8iO4 xi 2 ½0;10�;
x5 2f0;1g;
x6 2 ½1;2�:

9
>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>;

The reformulated problem is:

min
x;w

w1
1þw1

2�w1
3�2w1

4þw2
2þ3w2

4�w2
5þw3

4þ3w4
4þ2w4

5�x1�x4�x6þ e�w
2
3 ;

x1þx2�x3þx4þx5¼ 1;

x2�x4�x5¼�1;
x1þ2x2�2x3P0;

2x1þ7x2�x3O0;

ew
3
4 � logðx6Þ�w2

6O1;

x5�w5
5¼ 0;

w1
1¼x21;

w1
2¼x1x2;

w1
3¼x1x3;

w1
4¼x1x4;

w2
2¼x22;

w2
3¼x2x3;

w2
4¼x2x4;

w2
5¼x2x5;

w2
6¼x2x6;

w3
4¼x3x4;

w4
4¼x24;

w4
5¼x4x5;

w5
5¼x25;

8iO4 xi 2 ½0;10�;
x5;w

5
5 2 ½0;1�;

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
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x6 2 ½1;2�;
w2
5;w

4
5 2 ½0;10�;

w2
6 2 ½0;20�;
8iOjO4 wi

j 2 ½0;100�:

9
>>>>=

>>>>;

We have derived the bounds on the w variables by means of interval arith-
metic on the bilinear products in the x variables. Notice the formulation is
missing bilinear terms

w1
5 ¼ x1x5;

w3
3 ¼ x23;

w3
5 ¼ x3x5;

which we shall need to include in order to recover a full set of w variables.
Notice also that only one of the possible bilinear terms involving x6 (namely,
w2
6) is present: however, we shall not add all the missing w-defining con-

straints involving x6 in the formulation: since the linear constraints do not
depend on x6, no reduction constraint could eliminate the bilinear terms in
x6. In order to obtain a convex relaxation for this problem, the bilinear con-
straint w2

6 ¼ x2x6 will just have to be replaced by its McCormick envelope.
By multiplying the two linear equation constraints in the problem

x1 þ x2 � x3 þ x4 þ x5

x2 � x4 � x5

)

ð27Þ

by each variable xi for iO5 we can derive a set of ten reduction con-
straints. The companion system is a 10 � 15 matrix with rank 9, which
would mean that we only need to include six bilinear terms out of a possi-
ble fifteen.
Now notice that summing the two linear equations (27) together we get

the equation x1 þ 2x2 � x3 ¼ 0, which describes a linear five-dimensional
hypersurface T in R6. Notice also that the two linear inequality constraints
only involve variables x1;x2; x3: thus we can consider T as a linear 2D sur-
face (i.e., a plane) in relation to the planes in R3 described by the equations
derived by the inequality system

x1 þ 2x2 � 2x3 ¼ 0;

2x1 þ 7x2 � x3 ¼ 0:

In this case it is not difficult to see that the plane T, defined by
x1 þ 2x2 � x3 ¼ 0, has the same distance from the two planes above, for T
is a bisecting plane for the angle between the other two planes. To see this,
notice that the projections of the planes onto the x1;x3 axes are given by
the lines x3 ¼ 1

2x1 and x3 ¼ 2x1, and the projection of T onto the same
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axes is x3 ¼ x1; furthermore, the projections of the planes onto the x2; x3
axes are given by the lines x3 ¼ x2 and x3 ¼ 7x2, and the projection of T
onto the same axes is x3 ¼ 2x2. In both cases, the projections of T bisect
the angle between the projections of the other two planes (this is an easy
argument in elementary geometry).
Thus, we can reformulate the two linear inequality constraints as two

linear constraints involving x1; x2;x3 and a slack variable sP 0. Because of
the observations made in Section 7.4, we can use s as a slack variable for
both constraints. Thus the inequality constraints become:

x1 þ 2x2 � 2x3 � s ¼ 0;

2x1 þ 7x2 � x3 þ s ¼ 0:

)

ð28Þ

In order to generate some more reduction constraints from the above equa-
tions, we need to create the following w-defining bilinear constraints:

w1
s ¼ x1s;

w2
s ¼ x2s;

w3
s ¼ x3s;

w4
s ¼ x4s;

w5
s ¼ x5s;

ws
s ¼ s2:

We get additional reduction constraints by multiplying s by the two linear
equations in (27) and by multiplying the equations in (28) by x1; . . . ; x5; s.
Thus, for each iO5 we get a reduction constraint system Awi � xib ¼ 0
plus the added system Aws � sb ¼ 0, where

A ¼

1 1 �1 1 1
1 �1 �1

1 2 �2 �1
2 7 �1 1

0

B
B
@

1

C
C
A;

wi ¼ ðwi
1; . . . ; wi

5;w
i
sÞ, ws ¼ ðws

1; . . . ;ws
5;w

s
sÞ and b ¼ ð1;�1; 0; 0Þ. The corre-

sponding companion system Bz ¼ 0 is such that z ¼ ðz11; . . . ; z15; z
1
s ;

z22; . . . ; z25; z
2
s ; . . . ; z55; z

5
s ; z

s
sÞ, B is a 24 � 21 matrix with rank 18 and nonba-

sic variables z55; z
5
s ; z

s
s. This means that we only need to keep the three cor-

responding w-defining constraints in the formulation: adding the reduction
constraints will recover the rest of the bilinear terms. Unfortunately, the
constraint corresponding to z55 is crucial for the definition of x5 as a binary
variable: leaving it in the formulation implies that forming the convex
relaxation of the whole problem would replace that term with its corre-
sponding convex relaxation (15), and lose the definition of integrality of x5
(see Section 8). To avoid this situation we need to choose another nonbasic
variable set from the companion system. We apply a permutation to the
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variable set fx1; x2;x3; x4;x5g, like for example the cycle ð2 5Þ (which inter-
changes x2 and x5), which will cause the the vector z to become

z ¼ðz11; z15; z13; z14; z12; z1s ;
z55; z

5
3; z

5
4; z

5
2; z

5
s ;

z33; z
3
4; z

3
2; z

3
s ;

z44; z
4
2; z

4
s ;

z22; z
2
s ;

zssÞ:
The companion system then has rank 18 and nonbasic variables z44; z

4
s ; z

s
s.

Thus we only need to keep the bilinear relations stemming from these three
variables in order to recover the rest.
For the sake of completeness, we carry out the algorithm of Section (4.2).

Applying Gaussian elimination to A, we get a 6 � 4 matrix having rank 4:

1 1 �1 1 1
1 �1 �1
�1 �1

3 3

0

B
B
@

1

C
C
A:

Following the algorithm, this has nonbasic variables z15; z
1
s . We eliminate

the first column and find that the rank of the matrix thus obtained is still
4. We re-apply Gaussian elimination, and permute columns 4 and 5 (corre-
sponding to variables z25 and z2s ) to find the matrix

1 �1 1 1
1 �2 2
�2 �1 �2

� 3
2

0

B
B
@

1

C
C
A;

which has rank 4 and nonbasic variable z25 (the nonbasic variable corresponds
to the last column, but keep in mind that z25 and z2s have been permuted, so
the last column is actually z25). If we remove the first column we find that the
rank decreases to 3, so we remove the first row as well and end up with

1 �2 2
�2 �1 �2

� 3
2

0

@

1

A;

which has rank 3 and nonbasic variable z35. Again, removing the first col-
umn we find that the rank decreases to 2, so we remove the first row to get

�2 �1 �2
� 3

2

� �

;
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which has rank 2 and nonbasic variable z45. Removing the first column now
produces a matrix with rank 2, so the algorithm terminates. Thus, the algo-
rithm identifies the set fz15; z1s ; z25; z35; z45g of z variables whose corresponding
bilinear constraints we should keep in the formulation. Notice that the size
of this set is not minimal (as the companion matrix produces sets of size 3),
but it does not include the bilinear term z55 (crucial for the integrality of x5)
and it is still smaller than the set of bilinear terms that we should have kept
had we not considered deriving reduction constraints from inequalities.
So, finally, at the end of the reduction constraint creation process we

obtain the following reformulated problem:

min
x;w

w1
1 þ w1

2 � w1
3 � 2w1

4 þ w2
2 þ 3w2

4 � w2
5 þ w3

4 þ 3w4
4

þ 2w4
5 � x1 � x4 � x6 þ e�w

2
3 ;

x1 þ x2 � x3 þ x4 þ x5 ¼ 1;
x2 � x4 � x5 ¼ �1;
x1 þ 2x2 � 2x3 � s ¼ 0;
2x1 þ 7x2 � x3 þ s ¼ 0;

ew
3
4 � logðx6Þ � w2

6O1;

x5 � w5
5 ¼ 0;

w1
1 þ w1

2 � w1
3 þ w1

4 þ w1
5 � x1 ¼ 0;

w1
2 � w1

4 � w1
5 þ x1 ¼ 0;

w1
2 þ w2

2 � w2
3 þ w2

4 þ w2
5 � x2 ¼ 0;

w2
2 � w2

4 � w2
5 þ x2 ¼ 0;

w1
3 þ w2

3 � w3
3 þ w3

4 þ w3
5 � x3 ¼ 0;

w2
3 � w3

4 � w3
5 þ x3 ¼ 0;

w1
4 þ w2

4 � w3
4 þ w4

4 þ w4
5 � x4 ¼ 0;

w2
4 � w4

4 � w4
5 þ x4 ¼ 0;

w1
5 þ w2

5 � w3
5 þ w4

5 þ w5
5 � x5 ¼ 0;

w2
5 � w4

5 � w5
5 þ x5 ¼ 0;

w1
s þ w2

s � w3
s þ w4

s þ w5
s � xs ¼ 0;

w2
s � w4

s � w5
s þ xs ¼ 0;

w1
1 þ 2w1

2 � 2w1
3 � w1

s ¼ 0;

2w1
1 þ 7w1

2 � w1
3 þ w1

s ¼ 0;

w1
2 þ 2w2

2 � 2w2
3 � w2

s ¼ 0;

2w1
2 þ 7w2

2 � w2
3 þ w2

s ¼ 0;

w1
3 þ 2w2

3 � 2w3
3 � w3

s ¼ 0;

2w1
3 þ 7w2

3 � w3
3 þ w3

s ¼ 0;

w1
4 þ 2w2

4 � 2w3
4 � w4

s ¼ 0;

2w1
4 þ 7w2

4 � w3
4 þ w4

s ¼ 0;

w1
5 þ 2w2

5 � 2w3
5 � w5

s ¼ 0;
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2w1
5 þ 7w2

5 � w3
5 þ w5

s ¼ 0;

w1
s þ 2w2

s � 2w3
s � ws

s ¼ 0;

2w1
s þ 7w2

s � w3
s þ ws

s ¼ 0;

w2
6 ¼ x2x6;

w4
4 ¼ x24;

w4
s ¼ x4s;

ws
s ¼ s2;

8iO4 xi 2 ½0; 10�;
x5;w

5
5 2 ½0; 1�; x6 2 ½1; 2�; w2

6 2 ½0; 20�;
8iOjO4 wi

j 2 ½0; 100�;
sP 0; ws

s P 0;

8iO4 wi
5 2 ½0; 10�; 8iO5 wi

s P 0;

which only contains three of the 21 possible bilinear terms in the
x1; . . . ;x5; xs variables, plus the bilinear term x2x6 (recall the original pro-
blem had 12 bilinear terms).

10. Numerical results

The methods and algorithms described above were implemented in a soft-
ware framework for global optimization called ooOPS, i.e. object-oriented
Optimization System (Liberti et al., 2001). Within this framework, using an
implementation of the spatial Branch-and-Bound algorithm (Smith and
Pantelides, 1999) as the global solution module, and SNOPT (Gill, 1999)
as the local solution module, all the ideas proposed in this paper were put
to test, by solving the three examples of Section (9). The tests have been
carried out on a Pentium III class machine running at 850MHz with
384MB RAM.
Table 1 shows the results of these tests. By ‘‘reformulated problem’’ we

mean the full reformulation, taking into account reduction constraints and
the removal of unnecessary bilinear terms. ‘‘Iterations’’ is the number of
main iterations taken by the Branch-and-Bound procedure to arrive at the
global solution (the same as the number of explored regions). The CPU
time is just the user time (as opposed to the total CPU time, i.e. the sum
of user and system time). jVj is the number of problem variables and jBj is
the number of bilinear terms in the problem.
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In all cases the main results were confirmed:

– the reformulation is correct: the global solution arrived at by solving
the original problem was the same as the solution reached by solving
the reformulated problem;

– the reformulation is advantageous: the Branch-and-Bound procedure
took less iterations to arrive at the global solution.

Notice that in Example 3 – a MINLP with a binary variable – we found
the global solution at the first iteration. This means that the solution of
the convex relaxation was feasible in the original problem: and this, in
turn, means that the integrality of the binary variable had not been lost in
the convex relaxation, as explained in Section 8. Furthermore, Example 3
is the only one in the test set to include some of the novel techniques men-
tioned in Section 7 for the generation of reduction constraints from
inequality systems. It is also worth pointing out that in Examples 1 and 3
there were substantial CPU time savings (of about 80% of the total time
taken to solve the original problem). This result is all the more significant
as Example 3 is the largest and most complicated of the test set.
This investigation seems to point out that methods which act on the for-

mulation of the problem are extremely effective in cutting computational
costs when compared to heuristic decisions in the Branch-and-Bound algo-
rithm (like e.g., the choice of branching rule). One of the reasons for this is
surely that reformulation methods are usually a pre-processing step, and
thus only add an amount of computational time to the algorithm which is
not proportional to the number of iterations. Furthermore, when a refor-
mulation is based on theoretical concepts rather than heuristic ideas, it is
easier to understand its implications and to be able to forecast what kind
of computational time saving it might involve.

11. Applicability to sparse problems

As noted in Section 1, although the theory always holds true, the methods
derived in this paper rest on the assumption that the matrix Q, in problem
formulation (1), is dense. In this section we shall endeavor to explain why this
is the case and how the problems arising from this assumption can be tackled.

Table 1. Numerical results

Original problem Reformulated problem

Iterations CPU time |V| |B| Iterations CPU time |V| |B|

Example 1 63 0.1 s 2 3 1 0.02 s 5 1

Example 2 15 0.13 s 3 5 7 0.14 s 9 1

Example 3 35 15.13 s 6 12 1 3.56 s 28 4
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Generation of reduction constraints involves multiplying all existing lin-
ear constraints by all the problem variables. The number of bilinear terms
deleted is equal to the rank t of the companion system (10). The compa-
nion system has mn rows and 1

2 nðnþ 1Þ columns, where we have assumed
mO n. On the basis of the conjecture of Section 3, it is extremely likely
that companion systems arising from practical problems always have a
rank t which is strictly less than the number of the columns. We have
shown in Theorem 3.5 that in that case we need to keep precisely
r ¼ 1

2 nðnþ 1Þ � t bilinear terms in the formulation of the problem, i.e.
those bilinear terms that correspond to a set of nonbasic variables of the
companion system.
The problem we face, when Q is a sparse matrix, is that the number of

bilinear terms in the original problem formulation (1) might be less than r.
And even if it is not, it might happen that each set of nonbasic variables
of the companion system involves bilinear terms which are not present in
the original problem formulation. In short, when Q is sparse it is very
likely that after the reformulation we shall end up with a bigger set of
bilinear terms in the problem.
Haverly’s pooling problem, as formulated in (Adhya et al., 1999), pro-

vides an example of this occurrence:

min 6x1 þ 16x2 þ 10x3 � 9x4 � 15x5 � 9x6 � 15x7;

s:t: x1 þ x2 � x4 � x5 ¼ 0;

x3 � x6 � x7 ¼ 0;

x4 þ x5 � x9 ¼ 0;

x4 þ x6O100;

x5 þ x7O200;

�3x1 � x2 þ x8x9 ¼ 0;

�5
2
ðx4 þ x6Þ þ 2x6 þ x8x4O0;

�3
2
ðx5 þ x7Þ þ 2x7 þ x8x5O0;

0Ox1;x9O300;

0Ox2;x3; x4;x6O100;

0Ox5;x7O200;

0Ox8O10:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð29Þ

In this formulation, Haverly’s pooling problem has 3 linear equality con-
straints, 9 problem variables and 3 bilinear terms. The resulting companion
system (10) has 27 rows, 45 columns and rank 24. Therefore
r ¼ 45� 24 ¼ 21: at the end of the reformulation process we go from three
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bilinear terms to 21. We might conclude that this problem is not suscepti-
ble of reformulation via reduction constraints: but this is false. In fact, it is
easy to notice that multiplying constraint x4 þ x5 � x9 ¼ 0 by x8 produces
a reduction constraint w4

8 þ w5
8 þ w8

9 ¼ 0 (where wi
j ¼ xixj for all i; jOn)

which could allow us to eliminate one of the three bilinear terms.
This should not be seen as a counter-example to the theory and methods

derived in this paper. It simply shows that, if the problem is sparse, we
need to identify subsets of the original problem where we can apply this
theory profitably. By ‘‘subset of a problem’’ here we mean a subset of
problem variables and constraints where we can successfully apply the
ideas of Section 3. Supposing we were able a priori to restrict our attention
to the constraint subset fx4 þ x5 � x9 ¼ 0g with the multiplier variable x8,
the conclusions drawn by the theory would still hold.

11.1. ELIMINATING ZERO COLUMN VARIABLES

By using the ‘‘trick’’ described in this section it is sometimes possible to
discard some bilinear terms corresponding to nonbasic variables in the
companion system. This is useful to reduce the number of bilinear terms
required to apply the reduction constraints theory, and it is particularly
significant when sparse problems are considered. Let xk (for kOn) be a
problem variable whose corresponding column in the matrix A is zero.
Assume

A ¼

a11 . . . a1;k�1 0 a1;kþ1 . . . a1n

..

. ..
. ..

. ..
. ..

.

an1 . . . an;k�1 0 an;kþ1 . . . ann

0

B
B
@

1

C
C
A:

How does this reflect on the matrix B (see p. 8) of the companion system
(10)? Because of Lemma 4.1, if we let mðkÞ ¼ 1

2 kð2n� kþ 1Þ, the mðkÞth
column of B is a zero column. In other words the rest of the z variables
are independent of zkk. From this we can conclude that the w-defining
constraint wk

k ¼ x2k is not necessary to enforce the validity of the other
w-defining constraints. Thus, we only need to keep x2k if it is present in the
original problem formulation. If it is not, we shall not need to include it,
even though it corresponds to a nonbasic variable of the companion
system.
Suppose now that matrix A has more than one zero column: say columns

k1; . . . ; ku where u < n are all zero columns. It follows that for all jOu, the
bilinear terms x2kj are not needed in the formulation to infer the validity of
any of the other w-defining constraints. But it is also easy to show that in
this case there are other columns, in B, that only consist of zero entries. By
the characterization of matrix B in Section 4 we can see that columns of B
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corresponding to variables wki
kj
for all i < jO u are also zero. Thus, we shall

only need to keep the bilinear terms xkixkj if they are present in the original
formulation, but we shall not need to include them otherwise, even though
they correspond to nonbasic variables of the companion system.

11.2. MODELLING AN OPTIMAL PROCEDURE FOR REDUCTION CONSTRAINT CREATION

In this section we will rigorously formulate the problem of building the larg-
est possible set of reduction constraints whilst keeping the number of needed
bilinear terms at a minimum. To this end, we want to identify all maximal
subsets of linear constraints and problem variables so that forming reduction
constraints from them will minimize the number of bilinear constraints
needed to apply the theory of reduction constraints. We require these subsets
to be maximal in the sense that adding elements to them will cease to make
the application of the theory successful. In what follows, we shall refer to the
rank of a set of linear constraints: by that we mean the rank of the linear sys-
tem of equations composed by the linear constraints in the set.
For all iOm, let ci ¼

Pn
i¼1 aijxj � bi. Then for each iOm we have that

ci ¼ 0 is a constraint of the system Ax ¼ b. For each k 2 N let Ck;Vk be
index subsets such that Ck � f1; . . . ;mg and Vk � f1; . . . ; ng. Let
F ¼ fðCk;VkÞ j k 2 Ng and F be the family of all such sets F. For each
F 2 F , we define Tk to be the set of reduction constraints obtained by mul-
tiplying each constraint ci (for i 2 Ck) by each variable xj (for j 2 Vk) and
substituting each bilinear term xjxl appearing in the products xjci with its
corresponding w j

l variable; we define Zk to be the set of constraints (in the
z variables) in each of the reduction companion systems (see Definition
3.2) of Tk; and we define Uk to be the set of bilinear terms appearing in
the w-defining constraints (see Definition 2.1) needed to create the reduc-
tion constraints in Tk. Let Z ¼

S
k2N Zk, T ¼

S
k2N Tk, U ¼

S
k2N Uk, and

let t be the rank of system Z. Let U0 be the set of bilinear terms already
present in the original problem (1). Finally let sðFÞ ¼ jU [U0j � t be the
number of bilinear terms needed in the problem after the reduction con-
straint creation process. We look for a set F 2 F that satisfies the following
discrete optimization problem:

min
F2F

sðFÞ;

sðFÞ < jU0j;

)

ð30Þ

that is, we require that the number of bilinear terms present in the problem
after the reduction constraint creation process be minimal, and in particu-
lar strictly less than the number of bilinear terms present in the original
problem. Notice that in the discussion above, although it was not made
explicit, the set U0 does not depend on the choice of F, whereas the sets
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Tk;Zk;Uk;T;Z;U do, as does t. Let F be a solution of (30) and K ¼ jFj.
Notice that since the Zk, Tk and Uk are in general not disjoint systems of
sets, we have jRjO

PK
k¼1 jTkj, jZjO

PK
k¼1 jZkj, jU [UpjOjU0j þ

PK
k¼1 jUkj

and tO
PK

k¼1 rkðZkÞ. This emphasizes the interdependencies of the maximal
subset pairs ðCk;VkÞ for different k’s and further complicates an already
difficult problem.
Any procedure for finding a global solution F of problem (30) will be an

optimal creation process for reduction constraints with respect to any given
original problem (1): by keeping sðFÞ globally minimal, we make sure that
there is no better choice of the sets Ck;Vk; and by requiring that
sðFÞ < jUpj we keep the number of needed bilinear terms strictly less than
the number of bilinear terms in the original problem.
A direct procedure for the global minimization of sðFÞ over all the possi-

ble choices of F 2 F would involve the use of a discrete Branch-and-Bound
algorithm for the intelligent enumeration of all such families F. The solu-
tion of such a problem may or may not be an acceptable idea, depending
on the size of the problem and the amount of time given for pre-processing
the original problem (1). The discussion of such an algorithm is outside
of the scope of this paper, but it should not be too hard to implement,
given the amount of literature on discrete Branch-and-Bound algorithms
(Aho et al., 1983; Wolsey, 1998; Korte and Vygen, 2000).
A possible simplification of problem (30), which would still gather a use-

ful result, is to find a feasible solution F rather than an optimal one by
using some kind of heuristic method.

11.3. ALGORITHM FOR REDUCTION CONSTRAINT CREATION IN SPARSE PROBLEMS

The algorithm presented in this section identifies a subset of reduction con-
straints whose creation is convenient in terms of the number of added
bilinear terms, although the result, in general, is not optimal in the sense
of problem (30). This algorithm is based on an analysis of the companion
matrix B (see Section 4). Recall that the companion system is Bz ¼ 0,
where z ¼ ðz11; . . . ; z1n; z

2
2; . . . ; z2n; . . . ; znnÞ is such that each column of B cor-

responds to a bilinear term in the problem variables x. In particular, col-
umn zij corresponds to the bilinear term xixj for all iO jO n. In this
algorithm we shall use some of the terminology of Section 11.2.

1. Construct the companion system Bz ¼ 0 in the usual way as
explained in Section 4, and let Rðw; xÞ ¼ 0 be the corresponding
reduction constraint system.

2. Reduce B to row echelon form with nonzero entries along the diago-
nal, and replicate the same row operations on system Rðw; xÞ ¼ 0.
Delete from B any row with no nonzero entries, and delete the
corresponding rows from the system Rðw; xÞ ¼ 0. Let qðiÞ be the
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reduction constraint in Rðw; xÞ ¼ 0 that corresponds to the ith equa-
tion of the companion system Bz ¼ 0.

3. Mark the columns of B corresponding to the z variables defined by
the bilinear terms in U0 (the bilinear terms in the original probelm).

4. Find the subsystem B0z0 ¼ 0 consisting of all the rows of B which
have a nonzero entry in the marked columns; discard from B0 all the
columns consisting only of zeroes (and adjust the variable vector z0

accordingly, so that system B0z0 ¼ 0 now has no nonzero columns).
Let m0 be the number of rows and n0 be the number of columns of
B0. For all iOm0 let dðiÞ be the index in B of the ith row of B0.

5. For each iOm0, let xðiÞ be the set of column indices corresponding
to nonzero entries in the ith row; let fðiÞ be the number of columns
in xðiÞ which have been marked in step 3. Associate a cost /ðiÞ with
the ith row in B0: let /ðiÞ be initially the number of nonzero entries
of row i, and then set /ðiÞ  /ðiÞ � fðiÞ.

6. For each jO n0 let wðjÞ be the set I of row indices such that for all
i 2 I the ith row has a nonzero entry in the jth column of B0.

7. Order the columns of B0 so that column j1 is less than column j2 if
jwðj1Þj > jwðj2Þj (columns such that jwðj1Þj ¼ jwðj2Þj can retain their
natural order). To this ordering there corresponds a permutation p
of the columns acting on the set f1; . . . ; n0g.

8. Initialize k ¼ 1 and C ¼ f1; . . . ;m0g.
9. Find j such that pðjÞ ¼ k. For all i 2 wðjÞ \ C set /ðiÞ  /ðiÞ � 1,

and C C n wðjÞ (i.e., discard from C all indices in wðjÞ).
10. If k ¼ n0 or if C ¼ ; then go to step 12.
11. Set k kþ 1 and go back to step 9.
12. Discard from B0 all the rows whose associated cost / is strictly posi-

tive. Update the map d which relates the indices of B0 to the original
indices in B, and the number of rows m0 of B0.

13. Discard from B0 all the columns with no nonzero entries, and update
z0 accordingly, so that B0z0 ¼ 0 is a system with no nonzero columns.

14. Let R0ðw;xÞ be the set of equations of system Rðw; xÞ ¼ 0 indexed by
the set fdðiÞ j iOm0g. Discard from R0 all columns, among the first
1
2 nðnþ 1Þ, containing no nonzero entries, to obtain the reduced
reduction constraint system R0ðw0;xÞ ¼ 0.

The system R0ðw0;xÞ ¼ 0 is a set of reduction constraints such that the w0-
defining constraints needed to define it, minus the rank of B0, is less than
jU0j. The crux of this algorithm is the loop in steps 8–11, where the cost of
reduction constraints that have common bilinear terms is decreased. The
algorithm works because in step 12 we discard all reduction constraints
with a positive cost. The remaining reduction constraint system is such that

194 LEO LIBERTI



any added bilinear term is counterbalanced by a reduction constraint, and
no other bilinear term is added to the problem.
This algorithm has been tested on Haverly’s pooling problem in formula-

tion (29) and has correctly identified the reduction constraint stemming
from multiplying constraint x4 þ x5 � x9 ¼ 0 by variable x8.
Another attempt to construct an efficient (in terms in the number of

reduction constraints versus the number of needed bilinear terms) and fast
algorithm for the creation of reduction constraints, based on graph theory,
is currently under way (Liberti and Pantelides, submitted for publication).

12. Conclusion

In this paper we have shown how certain nonconvex problems can be easily
reformulated to exhibit more linearity than what is apparent at a first
glance; more precisely, some of the bilinear terms present in the original
problem can be substituted by special linear constraints called reduction
constraints. We have provided a theory describing the properties of these
reduction constraints and their realm of applicability, and proposed algo-
rithms to make their construction process automatic. By combining reduc-
tion constraints with existing convex relaxation methods for bilinear terms
we derived a convex relaxation for the original bilinear problem. We
showed that this convex relaxation is equivalent to that obtained by the
RLT, but involves fewer constraints. We then explored some of the ideas
that can be used in deriving reduction constraints from systems of inequal-
ities; and we explained how reduction constraints can be beneficial in the
solution of mixed-integer nonlinear programming problems (MINLPs). We
gave three worked-out examples of the usefulness of reduction constraints,
and some numerical results of tests which confirm the conclusions drawn by
the theory. Finally, we explained how to apply the methods derived in this
paper to sparse bilinear problems.

References

1. Adhya, N., Tawarmalani, M. and Sahinidis, N. (1999), A Lagrangian approach to the

pooling problem. Industrial and Engineering Chemistry Research 38, 1956–1972.
2. Adjiman, C. (1998), Global Optimization Techniques for Process Systems Engineering.

Ph.D. thesis, Princeton University.

3. Adjiman, C., Dallwig, S., Floudas, C. and Neumaier, A. (1998), A global optimization
method, aBB, for general twice-differentiable constrained NLPs: I. Theoretical advances.
Computers and Chemical Engineering 22(9), 1137–1158.

4. Aho, A., Hopcroft, J. and Ullman, J. (1983), Data Structures and Algorithms, Addison-
Wesley, Reading, MA.

5. Al-Khayyal, F. and Falk, J. (1983), Jointly constrained biconvex programming. Mathe-

matics of Operations Research 8(2), 273–286.

LINEARITY EMBEDDED IN NONCONVEX PROGRAMS 195



6. Epperly, T. (1995), Global optimization of nonconvex nonlinear programs using parallel

branch and bound. Ph.D. thesis, University of Winsconsin, Madison.
7. Epperly, T. and Pistikopoulos, E. (1997), A reduced space branch and bound algorithm for

global optimization. Journal of Global Optimization 11, 287–311.

8. Gill, P. (1999), User’s Guide for SNOPT 5.3. Systems Optimization Laboratory,
Department of EESOR, Stanford University, California.

9. Kesavan, P. and Barton, P. (2000), Decomposition algorithms for nonconvex mixed-

integer nonlinear programs. AIChE Symposium Series 96(323), 458–461.
10. Korte, B. and Vygen, J. (2000), Combinatorial Optimization, Theory and Algorithms,

Springer-Verlag, Berlin.

11. Liberti, L. (2004), Reduction constraints for the global optimization of NLPs. Interna-
tional Transactions in Operations Research 11, 33–41.

12. Liberti, L., Tsiakis, P., Keeping, B. and Pantelides, C. (2001), ooOPS, 1.24 ed., Centre for
Process Systems Engineering, Chemical Engineering Department, Imperial College,

London, UK.
13. McCormick, G. (1976), Computability of global solutions to factorable nonconvex pro-

grams: Part I – Convex underestimating problems. Mathematical Programming 10, 146–

175.
14. Ryoo, H.S. and Sahinidis, N.V. (1995), Global optimization of nonconvex NLPs and

MINLPs with applications in process design. Computers and Chemical Engineering 19(5),

551–566.
15. Sherali, H. and Alameddine, A. (1992), A new Reformulation–Linearization Technique for

bilinear programming problems. Journal of Global Optimization 2, 379–410.
16. Sherali, H., Smith, J. and Adams, W. (2000), Reduced first-level representations via the

reformulation–linearization technique: Results, counterexamples, and computations.
Discrete Applied Mathematics 101, 247–267.

17. Smith, E. (1996), On the optimal design of continuous processes. Ph.D. thesis, Imperial

College of Science, Technology and Medicine, University of London.
18. Smith, E. and Pantelides, C. (1997), Global optimisation of nonconvex MINLPs. Com-

puters and Chemical Engineering 21, S791–S796.

19. Smith, E. and Pantelides, C. (1999), A symbolic reformulation/spatial branch-and-bound
algorithm for the global optimisation of nonconvex MINLPs. Computers and Chemical
Engineering 23, 457–478.

20. Vaidyanathan, R. and El-Halwagi, M. (1996), Global optimization of nonconvex MINLPs
by interval analysis. In: Grossmann, I. (ed.), Global Optimization in Engineering Design,
pp. 175–193, Kluwer Academic Publishers, Dordrecht.

21. Wolsey, L. (1998), Integer Programming, Wiley, New York.

196 LEO LIBERTI



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


